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On the possibility of breakdown of Lorentz invariance in the 
Takahashi-Umezawa quantization method 

J D Jenkins 
Department of Physics, University of Durham, South Road, Durham, UK 

Received 13 September 1973 

Abstract. The Stuckelberg formalism, for a massive spin-one field interacting with external 
potentials, is quantized following the method of Takahashi and Umezawa. I t  is shown how 
the characteristic determinant of the field equations, which, in an earlier paper, was shown 
to have the same form as the Lee-Yang determinant, for such a theory, determines the 
possibility of breakdown of Lorentz invariance in the procedure of the Takahashi-Umezawa 
quantization method. 

1. Introduction 

In earlier papers (Jenkins 1973a, b, c) the relationship between the causal nature of a 
classical relativistic field theory (Velo and Zwanziger 1969a, b, 1971) and the Lorentz 
invariance of the corresponding quantum theory, was explored in detail for a massive 
spin-one field. 

For convenience of calculation, the most important result of the above papers 
(Jenkins 1973c) was derived in the,formalism due to Stuckelberg (1938). Spin one was 
described in terms of the Stuckelberg fields A,(x)  and @(x), and attention was restricted 
to interaction lagrangians of the form 

i3,A,(x)- 8, A,(x), external potentials 

which satisfy the requirement of being quadratic in r30A,(x) and a,@(x). In these circum- 
stances, it was shown that the classical theory is causal, in the sense of Vel0 and 
Zwanziger, if and only if the corresponding quantum theory is Lorentz invariant, in that 
the perturbation expansion for the S operator in the interaction picture is normal- 
independent. 

Central to the proof of this result is that the characteristic determinant, which 
determines the causal nature of the classical theory, and the Lee-Yang determinant 
(Lee and Yang 1962), which determines the normal-dependence of the perturbation 
expansion for the S operator in the interaction picture, have identical form. 

In the present paper, the Stuckelberg formalism is again used to demonstrate that 
the characteristic (Lee-Yang) determinant has further importance, in that it plays a 
significant role in the quantization method ofTakahashi and Umezawa (1953) (Takahashi 
1969). 
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2. Takahashi-Umezawa quantization 

In order to facilitate the calculations of the next section, a brief resume of the relevant 
parts of the Takahashi-Umezawa quantization method is given. For a fuller discussion, 
the book of Takahashi (1969) should be consulted. 

A free, multicomponent field, &x), is assumed to satisfy the homogeneous linear 
wave equation 

A ( d ) d ( x )  = 0. (2) 

A(d) d(d) = d(d)A(d) = (a2 + m2)1, (3) 

In the presence of interaction, the field equations for the Heisenberg picture field 

(4) 

The corresponding Klein-Gordon divisor, d(d), is defined by 

where m is the mass of the field and 1 is the metric matrix in the index space of +(x). 

become 

W ) + ( x )  = J ( x )  + d@K,(x) ,  
where 

and where the interaction lagrangian, Y l ( x ) ,  has, sufficiently for the present purposes, 
been assumed to depend only on 4 ( x ) ,  a,$(x) and external potentials. 

Next (4) is solved by the method of Green’s function giving 
00 

4 ( x )  = q50(x) - d(d)[Are‘(x - x’)J(x’) + d”Aret(x - x’)K,(x’)] d4x’ ,  (6) 
- m  

where C $ ~ ( X )  is a solution of the free-field equation (2) and 

Are‘(,) = B(xo)A(x) 

with e ( x o )  the unit step function and A(x)  the usual solution of the Klein-Gordon 
equation. 

Auxiliary fields are now introduced, and, for a given spacelike surface 6, are defined 
by 

$(x ,  a) = +O(X) - , d(d)[A(x - x’)J(x’)  + P A ( x  - x’)K,(x’)] d4x’ .  (7) 

The auxiliary fields satisfy both the free-field equation (2) and the corresponding free-field 
commutation relations. Equations (6) and (7) now give, for x on a (denoted by x/cr), 

L 
4 ( 4  = 4 W )  + J“ { [ W O  - xb), d(d)lA(x - x”’) 

- m  

+ [e(x0 - x;) ,  8”’ (d) ]A(~ - x’)K,(x‘))  d4x‘. (8) 
In similar fashion, it follows that 

a d @ )  = d ~ 4 ( x / d +  
m 

{ [ O b o  -x& d,d(d)]A(x -x’)J(x’)  J- 00 

+ [ ~ ( x O  -x& a’a,d(a)]A(x - x’)K,(x’)) d4x’ (9) 
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etc. These equations (8) and (9) now reduce to  expressions of the form 

respectively etc, where np is the unit normal to the spacelike surface o. 
It is this stage, in the Takahashi-Umezawa quantization method, which is critical 

for the discussions of the present paper. For, in order to  proceed with the quantization 
and calculate the interaction hamiltonian in the interaction picture, (10) and ( 1  1 )  must 
be solved for 4 ( x )  and 8,+(x) in terms of the auxiliary fields and their derivatives evaluated 
for x on CT. 

It will be seen, in the next section, for quite general interactions of the Stuckelberg 
field in external potentials, that the possibility of doing this depends on the possibility 
of inverting a matrix, the determinant of which has the same form as the characteristic 
(Lee-Yang) determinant. 

3. Stlickelberg formalism 

The lagrangian for the interacting Stuckelberg field is assumed -to have the form 

Y(x) = Y o ( x )  + YIW 

with the free lagrangian given by 

Y 0 ( x )  = -+3pAv(x)c?'~v(x) + $m2A,(x)Ap(x) + +a,@(x)aW(x) - ) m 2 e 2 ( x )  

and the interaction. lagrangian ( 1 )  of the form 

where Akj(x), Bk(X), C(x)  depend only on A&) + (l/m)dk@(x), dkAj(x)-djAk(X) and the 
external potentials, whilst, in addition to  this dependence, D(x)  also depends linearly 
on Ao(x)+ (l/m)d0@(x) and 8kAO(X)- 8OAk(X), and where repeated latin indices are 
summed over the values 1 , 2 , 3 .  The lack of manifest Lorentz invariance in the (formally 
invariant) expression (14) will be convenient for the following calculation. 

In order to write down the expressions, for the interacting Stuckelberg field theory 
defined by (12), (13) and (14), which correspond to (10) and ( l l ) ,  it is convenient to  
specialize to a flat spacelike surface with unit normal np = (1,0,0,0),  when it is sufficient 
to note the following. 

The Klein-Gordon divisors of A,(x) and O(x) are given respectively by 
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and finally 

[O(xo - xb), ao]A(x - x ' )  = 0 

[e(xo - xb), at]A(x - x ' )  = h4(x - x'). 

m 
B k ( S )  a0@(x) = ~ O @ ( X / ~ ) - - ( ~ ~ A ~ ( X ) - ~ O A ~ ( X ) ) - - -  

m 

Since (21) are already in the desired form, it only remains to use these in (22) and (23) to 
facilitate the writing of doAk(x) and d0@(x) in terms of the auxiliary fields and their 
derivatives. Thus, on remembering the assumed dependence of Aij(x) ,  B&(x), C(x) ,  D(x) 
on the Heisenberg picture field variables, (22) and (23) may be written respectively as 

a O A k ( x )  = z O A & ( X / f f )  + i ( A b j ( X / a )  + A j & ( x / a ) ) ( a j A O ( x / c ) -  d O A j ( x ) )  

Now (24) and (25) provide a set of simultaneous linear equations for the Heisenberg 
fields, with coefficients dependent only on the auxiliary fields, their derivatives and the 
external potentials. To solve these equations for aoAk(x) and ao@(x), it is necessary to 
invert a matrix, the determinant of which is given by 

Bi(xlc) 
m 

C(X/O) l+- 

hi j  + +(Aij(X/O) + A j i (x /c))  - - 
$3= 

Bj(x/a) -__ 
m m2 



350 J D Jenkins 

Note that 9 has exactly the same form as the expression given by Jenkins (1973~) for 
the characteristic (Lee-Yang) determinant. For th.e ensuing discussions, it is more 
convenient that (26)is generalized to an arbitrary spacelike surface Q, with unit normal n,. 
(26), thus generalized, will be denoted by 9 ( n ) ,  and is just of the same form as the 
corresponding generalization of the characteristic (Lee-Yang) determinant. 

4. Discussion 

Firstly it is noted that a relativistic quantum field theory may be constructed from the 
lagrangian given by (12), (13) and (14) only if the consequent field equations form a 
hyperbolic system. Thus, in the following, only couplings for which the field equations 
are hyperbolic will be considered. This means that the characteristic determinant 9 ( n )  
is restricted to having only real roots n, (Courant and Hilbert 1962). 

In the preceding pages, it has been seen that, for quantization on a given spacelike 
surface Q, the Takahashi-Umezawa method proceeds unhindered if and only if the 
characteristic (Lee-Yang) determinant 9 ( n )  does not vanish for n, normal to Q. Now 
since the normal to a three-dimensional surface is timelike if and only if the surface is 
spacelike, it follows that the Takahashi-Umezawa quantization method may be formally 
carried through for all spacelike surfaces if and only if 9 ( n )  has no real timelike root. 
However, since the possibility of complex roots was excluded from the outset, this 
condition on the roots of 9 ( n )  is necessary and sufficient for Lorentz invariance of the 
present type of theory (Jenkins 1973~). 

This result provides a simple view of how a breakdown of Lorentz invariance can 
occur in the Takahashi-Umezawa quantization method, for the present type of theory. 
For if 9 ( n )  were to have a real timelike root, there would be a corresponding class of 
spacelike surfaces, to which the root would be normal. Then, by the above, the 
Takahashi-Umezawa quantization method could not be carried through on these 
spacelike surfaces. Thus a breakdown of Lorentz invariance would manifest itself as a 
dependence of the procedure of the Takahashi-Umezawa method on the quantization 
surface. 

Usually the possibility of breakdown of Lorentz invariance in quantum field theories, 
derived from apparently invariant lagrangians, is explored by inspection of Dyson’s 
formula for the S operator, in the interaction picture, modified according to the Lee- 
Yang theorem (Matthews 1949, Lee and Yang 1962, Suzuki and Hattori 1972, Kvitky 
and Mouton 1972). By contrast, the present work isolates that stage in the procedure 
of the Takahashi-Umezawa quantization method at which a possible breakdown of 
Lorentz invariance would first manifest itself; namely the point at  which it is attempted 
to express the Heisenberg picture fields in terms of the auxiliary fields. 

Although the present note is only concerned with a massive spin-one Stuckelberg 
field interacting (quite generally) with external potentials, the result that the characteristic 
(Lee-Yang) determinant plays a significant role in the Takahashi-Umezawa quantiza- 
tion method, and the nature of that role, are expected to be the same for fields of arbitrary 
spin. 
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